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cular  antenna  arrays  (UCCA)  for spatial  smoothing  and  sidelobe  reduction.  The  modified  windows  are
applied  to  individual  rings  of  the  array  that  will taper  the  corresponding  current  amplitudes.  The  resulted
sidelobe  level,  beamwidth  and  stability  for amplitude  errors  are  discussed  for  the  different  proposed
tapering  windows  where  it  shows  a sidelobe  reduction  to about  49  dB  as  in  the case  of  Binomial  UCCA
while  the  Hamming  window  shows  the  most  immunity  to tapered  amplitude  errors.
idelobe level reduction

. Introduction

Concentric circular antenna arrays has an interesting features
ver other array configurations such as linear one-dimensional or
wo-dimensional arrays [1–6]. It has widespread use in various
pplications such as mobile, radar, sonar and direction finding.
he array consists of concentric rings each has a number of ele-
ents arranged in a circle of certain radius. The sidelobe level in

his array is 17.5 dB for most sizes which is less than that of the
wo-dimensional arrays by 4 dB [5].  A popular array geometry is
he uniform concentric circular arrays (UCCA) in which the rings as
ell as the individual ring elements are separated by almost half of

he wavelength [6,7]. If the number of elements of the neighbored
ings is incremented by 6 elements [7],  the rings will be separated
y the nearest distance to a half-wavelength (about 0.4775 of the
avelength). The UCCA at this separating distance will have the

ptimum radiation pattern and good predicted sidelobes locations
ut still has higher sidelobes levels which are not suitable in many
pplications requiring lower sidelobes. The problem of higher side-
obes can be solved through the tapered beamforming techniques
n which the array feeding currents are tapered in amplitudes so
hat it has the maximum value at the center of the array and falls to
he minimum at its ends. This technique is studied and performed
or the one-dimensional linear arrays and some tapered beam-
orming techniques such as Binomial, Dolph-Chebyshev and others

ad proposed [5].  On the other hand, a similar technique which is
quivalent to the tapered beamforming in filter design to improve
he stopband characteristics (sidelobes) by windowing where some
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windows such as Triangular, Hamming, Hanning, Blackman, Bino-
mial and others are used [8]. Therefore, in this paper we will modify
these filtering windows to be applied to the UCCA for radiation
pattern smoothing and sidelobe reduction and the beamwidth vari-
ation of the mainlobe is depicted for the different windows. Also the
array stability against tapered amplitude errors is discussed for the
different tapering windows and the immunity against these errors
is shown. The paper is arranged as follows: in Section 2, the array
geometry of the UCCA and its related parameters are displayed. Sec-
tion 3 introduces the different beamforming windows applied for
tapering the UCCA and Section 4 discusses the sidelobe level and
beamwidth variations. Section 5 discusses the stability of the array
against amplitude errors and finally, Section 6 concludes the paper.

2. Uniform concentric circular arrays (UCCA)

Fig. 1 displays the geometry of a concentric circular antenna
array consisting of M concentric rings each has a number of ele-
ments Nm where m = 1, 2, . . .,  M.  The elements in each ring are
assumed to be omnidirectional and the interelement separation is
almost half of the wavelength which can be obtained if the number
of elements in the rings is incremented by 6 [7] or:

Nm+1 = Nm + 6 (1)

The separating distance of �/2 is chosen to have a radiation
pattern that has one mainlobe and no grating lobes which appear
at larger separating distances. Also, the radiation pattern has
wider beamwidth if we  used a smaller interelement separation

which reduces the efficiency of the array. If the mutual coupling
between the neighbored elements is neglected, we can determine
an expression for the array factor at any direction if we know the
weights of the rings and the array steering matrix.

dx.doi.org/10.1016/j.aeue.2012.06.005
http://www.sciencedirect.com/science/journal/14348411
http://www.elsevier.com/locate/aeue
mailto:y.albagory@tu.edu.sa
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Fig. 1. Concentric circular arrays (CCA).

For the UCCA, the array steering matrix can be given by [7]:

S(�, �) = [S1(�, �)S2(�, �), . . . , Sm(�, �), . . . , SM(�, �)] (2)

here each column in AS(�,�) represents the ring steering vector
hich generally for the mth  ring is given by:

m(�, �) = [ejkrm sin �  cos(�−�m1)ejkrm sin � cos(�−�m2), . . . ,

ejkrm sin � cos(�−�mn), . . . , ejkrm sin � cos(�−�mNm )]T (3)

here k = 2�/� and this mth  ring has a radius rm and number of
lements Nm.

In tapered beamforming, we multiply the array steering matrix
ith a tapering weight matrix W(�,�) given by:

(�, �) = [˛1S1(�o, �o)˛2S2(�o, �o), . . . ,

˛mSm(�o, �o), . . . , ˛MSM(�o, �o)] (4)

here for m = 1, 2, . . .,  M,  ˛m is the amplitude coefficients of the
th ring current and Sm(�o,�o) is the ring steering vector at the
ainlobe direction (�o,�o). From Eq. (4),  we notice that all elements

n an individual ring is weighted by the same value therefore the
rray factor will be given by

(�, �) = SUM{W(�, �)HAS(�, �)} (5)

here the SUM operator is the summation of the elements of the
esulted matrix and H is the complex conjugate transpose.

In this section, some conventional windows are modified and
pplied for amplitude tapering of the UCCA. These windows are well
efined for filtering applications such as finite impulse response
FIR) filter designs such as Triangular, Hamming, Hanning, Black-

an  and Binomial windows. It had showed the possibility to reduce
he sidelobe-to-mainlobe ratio in the filter magnitude response.
onventional one-dimensional tapered arrays have tapered the
urrents of the individual array elements, while in the case of UCCA,
e consider the individual ring to be equivalent to an element of

he one-dimensional linear array. The following sections defines
hese possible amplitude tapering windows.

. Tapering windows for UCCA

In this section, some conventional windows are modified and
pplied for amplitude tapering of the UCCA. These windows are well
efined for filtering applications such as finite impulse response
FIR) filter designs such as Triangular, Hamming, Hanning, Black-
an  and Binomial windows. It had showed the possibility to reduce
he sidelobe-to-mainlobe ratio in the filter magnitude response.
onventional one-dimensional tapered arrays have tapered the
urrents of the individual array elements, while in the case of UCCA,
mun. (AEÜ) 67 (2013) 58– 63 59

we consider the individual ring to be equivalent to an element of
the one-dimensional linear array. The following sections defines
these possible amplitude tapering windows.

3.1. Uniform feeding window

The uniformly fed UCCA has the same amplitude coefficients
which is the unity or

˛m = 1, m = 1, 2, ..., M (6)

these coefficients give the smallest beamwidth compared with any
other window and the highest sidelobe level of 17.5 dB as shown
in Fig. 2a for a typical array of N1 = 5 and M = 10.

3.2. Triangular amplitude tapering

In Triangular tapering, the amplitude weighting follows a trian-
gular function that equals zero at a virtual ring number M + 1. The
rings amplitude coefficients for this scheme is given by:

˛m = (M − m + 1)
M

,  m = 1, 2, ..., M (7)

where m is the ring number in the array. The innermost ring has a
weight value ˛1 = 1 while the outermost ring has a weight value of
˛M = 1/m.

Fig. 2b displays a typical radiation pattern of the same array
configuration as in Fig. 2a.

3.3. Hamming amplitude tapering

The Hamming window [8] used for filter applications are modi-
fied here and gives the following rings coefficients for a UCCA of M
rings:

˛m = 0.54 − 0.46 cos
(

�(m − M − 2)
M + 1

)
, m = 1, 2, ..., M (8)

Fig. 2c displays the radiation pattern of Hamming UCCA where
the sidelobe level will be 29.5 dB.

3.4. Hanning amplitude tapering

The Hanning window [8] is very similar to the Hamming win-
dow and provides an array coefficients that are modified to suit the
application of the UCCA and is given by:

˛m = 0.5 − 0.5 cos
(

�(m − M − 2)
M + 1

)
, m = 1, 2, ..., M (9)

Fig. 2d depicts the radiation pattern of the Hanning tapered
array which has a very similar value of the sidelobe level as in the
Hamming array.

3.5. Blackman amplitude tapering

Invariant to the last tapering schemes, Blackman window [8]
provides another cosine term for further sidelobe reduction. The
modified coefficients function for the UCCA tapering is given by:

˛m = 0.42 − 0.5 cos
(

�(m − M − 2)
M + 1

)

+ 0.08 cos
(

2�(m − M − 2)
)

, m = 1, 2, ..., M (10)

M + 1

The radiation pattern for this type of tapering is shown in Fig. 2e
which reduces the sidelobe level to 38 dB.
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a. Typical radiation pattern of uniformly fed 

UCCA of 51N  and 10M . 
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b. Typical radiation pattern of Triangular 

UCCA of 51N  and 10 M . 
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c. Typical radiation pattern of Hamming 

UCCA of 51N  and 10M . 
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e. Typical radiation pattern of Blackman UCCA of  51N  and 

10M . 
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d. Typical radiation pattern of Hanning 

UCCA of 51N  and 10 M . 
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f. Typical radiation pattern of Binomial UCCA of 51N  and 

10M . 

Fig. 2. (a) Typical radiation pattern of uniformly fed UCCA of N1 = 5 and M = 10. (b) Typical radiation pattern of Triangular UCCA of N1 = 5 and M = 10. (c) Typical radiation
pattern of Hamming UCCA of N1 = 5 and M = 10. (d) Typical radiation pattern of Hanning UCCA of N1 = 5 and M = 10. (e) Typical radiation pattern of Blackman UCCA of N1 = 5
and  M = 10. (f) Typical radiation pattern of Binomial UCCA of N1 = 5 and M = 10.
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Table 1
Binomial coefficients of the UCCA.

M k Binomial coefficients for
linear arrays of k elements

Binomial coefficients
for UCCA

1 2 1, 1 1
2 4  1, 3, 3, 1 3, 1
3  6 1, 5, 10, 10, 5, 1 10, 5, 1

3

i
t
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w
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4  8 1, 7, 21, 35, 35, 21, 7, 1 35, 21, 7, 1
5  10 1, 9, 36, 84, 126, 126, 84, 36, 9, 1 126, 84, 36, 9, 1

.6. Binomial amplitude tapering

The Binomial amplitude feeding [5] of the UCCA can be obtained
f we apply the Binomial coefficients to the ring arrays. Starting with
he Binomial expansion for the following expression:

1 + x)k−1 = 1 + (k − 1)x  + (k − 1)(k − 2)
2!

x2

+ (k − 1)(k − 2)(k − 3)
3!

x3 + · · · (11)

here for linear one-dimensional Binomial arrays, the elements
oefficients are taken as the first k positive coefficients. In the UCCA
ase, we assume that k = 2M and find the first k coefficients in Eq.
11), then the binomial amplitude window is taken as the values of
hese coefficients from M + 1 to 2M as depicted in Table 1.

For example, if we have M = 4, then the innermost ring will be
eighted in amplitude by ˛1 = 35 and for the second outer ring
2 = 21, etc., while for any number of rings in the array, the out-
rmost ring will have ˛M = 1. Binomial window will provide the
owest possible sidelobe level and the largest beamwidth compared

ith any other tapering scheme. A typical radiation pattern of Bino-
ial UCCA of the same configuration as in the last cases is depicted

n Fig. 2f where the sidelobe level will be 43.5 dB.
Fig. 3 displays the variations of the different proposed windows

or a UCCA of N1 = 5 and M = 10 where the values are normalized
ith respect to that of the innermost ring. In this figure, the weights

f the Binomial window has the largest values spread which intro-
uces some practical limitations and will be sensitive to amplitude

rrors while the lowest spread in values occurs in the case of Ham-
ing window.
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Fig. 3. Typical values of the windows for tapered UCCA of M = 10.

Fig. 4. (a) Sidelobe level variation of tapered UCCA at N1 = 5. (b) Sidelobe level vari-
ation of tapered UCCA at N1 = 10. (c) Sidelobe level variation of tapered UCCA at
N1 = 20.



62 M. Nofal et al. / Int. J. Electron. Commun. (AEÜ) 67 (2013) 58– 63

Fig. 5. (a) Beamwidth variation of tapered UCCA at N1 = 5. (b) Beamwidth variation
of  tapered UCCA at N1 = 10. (c) Beamwidth variation of tapered UCCA at N1 = 20.

1 2 3 4 5 6 7 8 9 10
-45

-40

-35

-30

-25

-20

-15

S
id

e
lo

b
e

 l
e

v
e

l 
in

 d
B

Triangular

Hamming 

Hanning 

Blackman 

Binomial 
Erroneous ring

Fig. 6. Sidelobe degradation as a function of the error location within the UCCA.

4. Sidelobe and beamwidth performance

The maximum sidelobe level and the mainlobe beamwidth
are discussed in this section for the different weighting schemes.
Fig. 4a–c displays the sidelobe levels in dB for the tapered UCCA
as a function of the number of rings at different internal ring size.
From these figures we notice in general that the sidelobe level will
decrease for all windows with increasing the number of rings in the
array at a specific innermost size. The uniform feeding case provides
the highest sidelobe level, while the Binomial tapering provides the
lowest possible levels especially for lower number of elements in
the innermost ring and approaches 49 dB below the mainlobe at
M = 20 ring for the UCCA of N1 = 5 as shown in Fig. 4a. If we increase
the number of elements in the innermost ring, the tapered UCCA
performance degrades for all windows and the sidelobes will raise
again as depicted in Fig. 4b and c. Also the curves in these figures
will converge more and become closer together at larger number
of elements in the innermost ring.

On the other hand, Fig. 5a–c depict the beamwidth of the main-
lobe for the different feeding schemes where it decreases with both
increasing the number of rings in the array and the number of ele-
ments of the innermost ring. The Binomial window will result in
the largest beamwidth while in all cases the lowest beamwidth
is obtained from the uniform feeding. As noticed with the side-
lobe performance, the curves of the beamwidth will converge more
together as the number of elements in the innermost ring increases.

5. Stability of tapered UCCA

A very important issue of the tapered beamforming is the stabil-
ity of the array performance against the amplitude feeding errors.
These errors will affect greatly the radiation pattern of the UCCA
and result in higher sidelobes. The performance of the UCCA with
tapering errors can be discussed assuming an erroneous ring feed-
ing and show the effect on the sidelobe level. These errors may
occur at any ring and it is expected that the errors in the outer rings
will result in more degradation than if it was in the inner ones. As
a case study, we consider a tapered UCCA of N1 = 5 and M = 10 and
assuming an error that can be occurred in any ring results from
changing the coefficient value to be equal to 1. Fig. 6 depicts the
sidelobe level of this tapered UCCA as a function of the error loca-

tion for various proposed tapering windows where the sidelobe
level for all windows will converge to 17.5 dB when the error occurs
in the outermost ring. The increase in the sidelobe level is faster in
the case of Binomial tapering while there is an immunity showed
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n the case of Hamming window. To clarify the amount of degrada-
ion in the array performance, we take the difference between the
esulted sidelobe levels before and after the feeding errors as shown
n Fig. 6, In this figure, the difference is largest for the Binomial

indow while the Hamming window shows the smallest differ-
nce indicating an immunity to amplitude errors compared with
he other schemes.

. Conclusion

In this paper, some conventional windows are modified to suit
he tapered beamforming for the UCCA. These windows are dis-
ussed in details and the array performance in terms of the sidelobe
evels and the beamwidth variations are discussed. It has been
oticed that the sidelobe level and beamwidth for any window are
ensitive to the number of elements in the innermost ring and the
umber of rings in the array. Also the lowest possible sidelobe level

ccurs in the case of Binomial tapering while it provides the max-
mum beamwidth compared with the other windows. The array
erformance with the tapered amplitude errors is also discussed
nd showed that the Binomial windowing is highly sensitive with

[

[

mun. (AEÜ) 67 (2013) 58– 63 63

amplitude variations while the Hamming window has the highest
immunity against these errors.
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